Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanophotonics ; 13(10): 1681-1691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681681

RESUMO

Over the past few decades, THz technology has made considerable progress, evidenced by the performance of current THz sources and detectors, as well as the emergence of several THz applications. However, in the realm of quantum technologies, the THz spectral domain is still in its infancy, unlike neighboring spectral domains that have flourished in recent years. Notably, in the microwave domain, superconducting qubits currently serve as the core of quantum computers, while quantum cryptography protocols have been successfully demonstrated in the visible and telecommunications domains through satellite links. The THz domain has lagged behind in these impressive advancements. Today, the current gap in the THz domain clearly concerns quantum technologies. Nonetheless, the emergence of quantum technologies operating at THz frequencies will potentially have a significant impact. Indeed, THz radiation holds significant promise for wireless communications with ultimate security owing to its low sensitivity to atmospheric disturbances. Moreover, it has the potential to raise the operating temperature of solid-state qubits, effectively addressing existing scalability issues. In addition, THz radiation can manipulate the quantum states of molecules, which are recognized as new platforms for quantum computation and simulation with long range interactions. Finally, its ability to penetrate generally opaque materials or its resistance to Rayleigh scattering are very appealing features for quantum sensing. In this perspective, we will discuss potential approaches that offer exciting prospects for generating and detecting non-classical states of THz light, thereby opening doors to significant breakthroughs in THz quantum technologies.

2.
Nat Commun ; 15(1): 2312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485950

RESUMO

Harmonic generation is a result of a strong non-linear interaction between light and matter. It is a key technology for optics, as it allows the conversion of optical signals to higher frequencies. Owing to its intrinsically large and electrically tunable non-linear optical response, graphene has been used for high harmonic generation but, until now, only at frequencies < 2 THz, and with high-power ultrafast table-top lasers or accelerator-based structures. Here, we demonstrate third harmonic generation at 9.63 THz by optically pumping single-layer graphene, coupled to a circular split ring resonator (CSRR) array, with a 3.21 THz frequency quantum cascade laser (QCL). Combined with the high graphene nonlinearity, the mode confinement provided by the optically-pumped CSRR enhances the pump power density as well as that at the third harmonic, permitting harmonic generation. This approach enables potential access to a frequency range (6-12 THz) where compact sources remain difficult to obtain, owing to the Reststrahlenband of typical III-V semiconductors.

3.
Adv Mater ; 36(14): e2304243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160244

RESUMO

2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.

4.
ACS Appl Mater Interfaces ; 15(32): 38592-38602, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550946

RESUMO

Disordered topological insulator (TI) films have gained intense interest by benefiting from both the TI's exotic transport properties and the advantage of mass production by sputtering. Here, we report on the clear evidence of spin-charge conversion (SCC) in amorphous Gd-alloyed BixSe1-x (BSG)/CoFeB bilayers fabricated by sputtering, which could be related to the amorphous TI surface states. Two methods have been employed to study SCC in BSG (tBSG = 6-16 nm)/CoFeB(5 nm) bilayers with different BSG thicknesses. First, spin pumping is used to generate a spin current in CoFeB and detect SCC by the inverse Edelstein effect (IEE). The maximum SCC efficiency (SCE) is measured to be as large as 0.035 nm (IEE length λIEE) in a 6 nm thick BSG sample, which shows a strong decay when tBSG increases due to the increase of BSG surface roughness. The second method is THz time-domain spectroscopy, which reveals a small tBSG dependence of SCE, validating the occurrence of a pure interface state-related SCC. Furthermore, our angle-resolved photoemission spectroscopy data show dispersive two-dimensional surface states that cross the bulk gap until the Fermi level, strengthening the possibility of SCC due to the amorphous TI states. Our studies provide a new experimental direction toward the search for topological systems in amorphous solids.

5.
Micromachines (Basel) ; 13(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36557362

RESUMO

Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However, until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone considerable development in the past decade, which includes revealing the underlying mechanism of pulse formation, the development of an ultrafast THz detection technique, and the invention of novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast pulse generation from QCLs in both the THz and MIR regimes.

6.
Phys Rev Lett ; 129(13): 137401, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206429

RESUMO

We investigate the nonlinear refraction induced by Rydberg excitons in Cu_{2}O. Using a high-precision interferometry imaging technique that spatially resolves the nonlinear phase shift, we observe significant shifts at extremely low laser intensity near each exciton resonance. From this, we derive the nonlinear index n_{2}, present the n_{2} spectrum for principal quantum numbers n≥5, and report large n_{2} values of order 10^{-3} mm^{2}/mW. Moreover, we observe a rapid saturation of the Kerr nonlinearity and find that the saturation intensity I_{sat} decreases as n^{-7}. We explain this with the Rydberg blockade mechanism, whereby giant Rydberg interactions limit the exciton density, resulting in a maximum phase shift of 0.5 rad in our setup.

7.
Opt Express ; 30(9): 15556-15565, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473272

RESUMO

We demonstrate a table-top source delivering ultra-broadband THz pulses with electric field strength exceeding 100 kV/cm at a repetition rate of 200 kHz. The source is based on optical rectification of 23 fs pulses at 1030 nm delivered by a ytterbium-doped fiber laser followed by a nonlinear temporal compression stage. We generate THz pulses with a conversion efficiency of up to 0.11 % with a spectrum extending to 11 THz using a 1 mm thick GaP crystal and a conversion efficiency of 0.016 % with a spectrum extending to 30 THz using a 30 µm thick GaSe crystal. The essential features of the emitted THz pulse spectra are well captured by simulations of the optical rectification process relying on coupled nonlinear equations. Our ultrafast laser-based source uniquely satisfies an important requirement of nonlinear THz experiments, namely the emission of ultra-broadband THz pulses with high electric field amplitudes at high repetition rates, opening a route towards nonlinear time-resolved THz experiments with high signal-to-noise ratios.

8.
Nat Commun ; 12(1): 1427, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658507

RESUMO

Millimeter wave (mmWave) generation using photonic techniques has so far been limited to the use of near-infrared lasers that are down-converted to the mmWave region. However, such methodologies do not currently benefit from a monolithic architecture and suffer from the quantum defect i.e. the difference in photon energies between the near-infrared and mmWave region, which can ultimately limit the conversion efficiency. Miniaturized terahertz (THz) quantum cascade lasers (QCLs) have inherent advantages in this respect: their low energy photons, ultrafast gain relaxation and high nonlinearities open up the possibility of innovatively integrating both laser action and mmWave generation in a single device. Here, we demonstrate intracavity mmWave generation within THz QCLs over the unprecedented range of 25 GHz to 500 GHz. Through ultrafast time resolved techniques, we highlight the importance of modal phases and that the process is a result of a giant second-order nonlinearity combined with a phase matched process between the THz and mmWave emission. Importantly, this work opens up the possibility of compact, low noise mmWave generation using modelocked THz frequency combs.

9.
Nano Lett ; 20(7): 5408-5414, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32470310

RESUMO

Graphene quantum dots (GQDs) have recently attracted considerable attention, with appealing properties for terahertz (THz) technology. This includes the demonstration of large thermal bolometric effects in GQDs when illuminated by THz radiation. However, the interaction of THz photons with GQDs in the Coulomb blockade regime, i.e., single electron transport regime, remains unexplored. Here, we demonstrate the ultrasensitive photoresponse to THz radiation (from <0.1 to 10 THz) of a hBN-encapsulated GQD in the Coulomb blockade regime at low temperature (170 mK). We show that THz radiation of ∼10 pW provides a photocurrent response in the nanoampere range, resulting from a renormalization of the chemical potential of the GQD of ∼0.15 meV. We attribute this photoresponse to an interfacial photogating effect. Furthermore, our analysis reveals the absence of thermal effects, opening new directions in the study of coherent quantum effects at THz frequencies in GQDs.

10.
Light Sci Appl ; 9: 51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257182

RESUMO

The use of fundamental modelocking to generate short terahertz (THz) pulses and THz frequency combs from semiconductor lasers has become a routine affair, using quantum cascade lasers (QCLs) as a gain medium. However, unlike classic laser diodes, no demonstrations of harmonic modelocking, active or passive, have been shown in THz QCLs, where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity's fundamental round-trip frequency. Here, using time-resolved THz techniques, we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency. We demonstrate the generation of the harmonic electrical beatnote within a QCL, its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach. Finally, we show indications of self-starting harmonic emission, i.e., without external modulation, where the QCL operates exclusively on a harmonic (up to its 15th harmonic) of the round-trip frequency. This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic, as well as photonic, nature of QCLs. These results open up the prospect of passive harmonic modelocking and THz pulse generation, as well as the generation of low-noise microwave generation in the hundreds of GHz region.

11.
Opt Express ; 27(15): 20231-20240, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510121

RESUMO

Miniaturized frequency combs (FCs) can be self-generated at terahertz (THz) frequencies through four-wave mixing in the cavity of a quantum cascade laser (QCL). To date, however, stable comb operation is only observed over a small operational current range in which the bias-depended chromatic dispersion is compensated. As most dispersion compensation techniques in the THz range are not tunable, this limits the spectral coverage of the comb and the emitted output power, restricting potential applications in, for example, metrology and ultrashort THz pulse generation. Here, we demonstrate an alternative architecture that provides a tunable, lithographically independent, control of the free-running coherence properties of THz QCL FCs. This is achieved by integrating an on-chip tightly coupled mirror with the QCL cavity, providing an external cavity and hence a tunable Gires Tournois interferometer (GTI). By finely adjusting the gap between the GTI and the back-facet of an ultra-broadband, high dynamic range QCL, we attain wide dispersion compensation regions, where stable and narrow (~3 kHz linewidth) single beatnotes extend over an operation range that is significantly larger than that of dispersion-dominated bare laser cavity counterparts. Significant reduction of the phase noise is registered over the whole QCL spectral bandwidth (1.35 THz). This agile accommodation of a tunable dispersion compensator will help enable uptake of QCL-combs for metrological, spectroscopic and quantum technology-oriented applications.

12.
Opt Express ; 27(10): 14784-14797, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163921

RESUMO

Polarimetric measurements in the terahertz (THz) range have a wide range of applications in material science and physico-chemistry. Usually performed using mechanically controlled elements, such measurements are inherently limited in precision and acquisition rate. Here, we propose and realize an innovative concept of a THz pulse emitter, linearly polarized, which allows electrical continuous control of the polarization direction and modulation ability up to several tens of kHz. It consists in an interdigitated photoconductive switch with an intermixed sickle geometry, where the vertical and horizontal components of the electric field are intermixed at a subwavelength scale. We demonstrate that such an emitter permits control of the direction and amplitude emitted with an excellent degree of polarization up to 4 THz, which is estimated to be experimentally better than 98%. This work opens perspectives for sensitivity improvements in THz polarimetry with lock-in detection schemes.

13.
Nat Commun ; 9(1): 5181, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504849

RESUMO

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted the following: 'We also acknowledge support from the Australian Research Council's Discovery Projects Funding Scheme (Grant DP 160 103910).' This has been corrected in both the PDF and HTML versions of the Article.

14.
Nat Commun ; 9(1): 3076, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082762

RESUMO

Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission. This approach allows us to observe hopping between lasing modes on picosecond-timescales and the temporal evolution of transient multi-mode emission into steady-state single mode emission. The underlying physics is explained through a full multi-mode, temperature-dependent carrier and photon transport model. Our results show that the fundamental limit on the timescales of frequency-switching between competing modes varies with the underlying Vernier alignment of the laser cavity.

15.
Opt Express ; 21(13): 16162-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842401

RESUMO

We measure the electric field of a train of modelocked pulses from a quantum cascade laser in the time-domain by electro-optic sampling. The method relies on synchronizing the modelocked pulses to a reference laser and is applied to 15-ps pulses generated by a 2-THz quantum cascade laser. The pulses from the actively modelocked laser are completely characterized in field and in time with a sub-ps resolution, allowing us to determine the amplitude and phase of each cavity mode. The technique can also give access to the carrier-envelope phase of each pulse.

16.
Nat Commun ; 1: 69, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20842195

RESUMO

The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy.

17.
Nature ; 449(7163): 698-701, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17928855

RESUMO

Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the coherence time of the optical transition. This time is determined by the oscillation period of the laser radiation and thus is very short. Rigorous quantum mechanical models predict interesting effects like quantum beats, lasing without inversion, and photon echo processes. As these models are based on quantum coherence and interference, knowledge of the phase within the optical cycle is of particular interest. Laser radiation has so far been measured using intensity detectors, which are sensitive to the square of the electric field. Therefore information about the sign and phase of the laser radiation is lost. Here we use an electro-optic detection scheme to measure the amplitude and phase of stimulated radiation, and correlate this radiation directly with an input probing pulse. We have applied this technique to semiconductor quantum cascade lasers, which are coherent sources operating at frequencies between the optical (>100 THz) and electronic (<0.5 THz) ranges. In addition to the phase information, we can also determine the spectral gain, the bias dependence of this gain, and obtain an insight into the evolution of the laser field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...